Power and Energy Impact by Loop Transformations
نویسندگان
چکیده
In this paper, we study the contribution of compiler optimizations to energy reduction. In particular, we are interested in the impact of loop optimizations in terms of performance and power tradeoffs. Both low-level loop optimizations at code generation (back-end) phase, such as loop unrolling and software pipelining, and high-level loop optimizations at program analysis and transformation phase ( frontend), such as loop permutation and tiling, are studied.
منابع مشابه
Impact of ILP-improving Code Transformations on Loop Buffer Energy
For multimedia applications, loop buffering is an efficient mechanism to reduce the power in the instruction memory of embedded processors. In particular, software controlled clustered loop buffers are very energy efficient. However code transformations needed in VLIW compilers to reach a higher ILP potentially may have a large negative influence on the energy consumed in the instruction memori...
متن کاملThe Impact of Source Code Transformations on Software Power and Energy Consumption
Software power consumption minimization is becoming more and more a very relevant issue in the design of embedded systems, in particular those dedicated to mobile devices. The paper aims at reviewing state of the art source code transformations in terms of their effectiveness on power and energy consumption reduction. A design framework for the C language has been set up, using the gcc compiler...
متن کاملInfluence of heat generation on the phase transformations and impact responses of composite plates with embedded SMA wires
In the present research, in contrast to the available papers, not only the superelasticity but also the shape memory effects are taken into account in determination of the impact responses. At the same time, in addition to modifying Brinson’s model for the shape memory alloys (SMAs), to include new parameters and loading events, and Hertz contact law, distributions of the SMA phases are conside...
متن کاملThe Impact of Superconducting Fault Current Limiter Locations on Voltage Sag in Power Distribution System
In this paper, the impacts of installing superconducting fault current limiter (SFCL)in radial and loop power distribution system are evaluated to improve voltage sag in both cases of with and without distributed generations (DG). Among various SFCLs, the hybrid type with a superconducting element in parallel with a current limiting reactor (CLR) is selected. This is more effective than resisto...
متن کاملDistance protection closed-loop testing using RTDS
This paper presents a distance protection test procedure by applying the Real-Time Digital Simulator (RTDS) of a power system. RTDS is a tool to design, develop, and test power-system protection. The RTDS enables real-time computation of electromagnetic phenomena with a calculation time step of even 50μs. The hardware allows the import and export of many signals from the simulator to an ext...
متن کامل